71M6533/G/H and 71M6534/H Data Sheet
FDS_6533_6534_004
2.2
System Timing Summary
Figure 19 summarizes the timing relationships between the input MUX states, the CE_BUSY signal and
the two serial output streams. In this example, MUX_DIV[3:0] = 6 and FIR_LEN[1:0] = 1. The duration of
each MUX frame is ( M40MHZ/M26MHZ = 00, 10, or 11 assumed):
?
?
?
1 + MUX_DIV[3:0] * 1, if FIR_LEN[1:0] = 0 (138 CE cycles), complete MUX frame = 7 CK32 cycles
1 + MUX_DIV[3:0] * 2, if FIR_LEN[1:0] = 1 (288 CE cycles) , complete MUX frame = 13 CK32 cycles
1 + MUX_DIV[3:0] * 3, if FIR_LEN[1:0] = 2 (384 CE cycles) , complete MUX frame = 19 CK32 cycles
An ADC conversion will always consume an integer number of CK32 clocks. Following this is a single
CK32 cycle where the bandgap voltage is allowed to recover from the change in CROSS.
ADC TIMING
CK32
MUX_SYNC
ADC EXECUTION
150
ADC MUX Frame
MUX_DIV Conversions ( MUX_DIV =6 is shown)
Settle
CE TIMING
CE_EXECUTION
0
ADC0
300
ADC1
600
ADC2
900
ADC3
1200
ADC4
1500
ADC5
1800
CE_BUSY
XFER_BUSY
CK COUNT = CE_CYCLES + floor((CE_CYCLES + 2) / 4)
MAX CK COUNT
RTM TIMING
RTM
INITIATED BY A CE OPCODE AT END OF SUM INTERVAL
140
NOTES:
1. ALL DIMENSIONS ARE 4.9152 MHz CK COUNTS.
2. XFER_BUSY OCCURS ONCE EVERY (PRESAMPS * SUM_CYCLES) CODE PASSES.
Figure 19: Timing Relationship between ADC MUX and Compute Engine
Each CE program pass begins when the ADC0 conversion (slot 0, as defined by SLOT0_SEL ) begins.
Depending on the length of the CE program, it may continue running until the end of the last conversion.
CE opcodes are constructed to ensure that all CE code passes consume exactly the same number of
cycles. The result of each ADC conversion is inserted into the XRAM when the conversion is complete.
The CE code is written to tolerate sudden changes in ADC data. The exact clock count when each ADC
value is loaded into RAM is shown in Figure 19 .
Figure 20 shows that the serial data stream, RTM, begins transmitting at the beginning of state S. RTM,
consisting of 140 CK cycles, will always finish before the next code pass starts.
CK32
MUX_SYNC
CKTEST
TMUXOUT/RTM
FLAG
0
1
30
31
FLAG
0
1
30
31
FLAG
0
1
30
31
FLAG
0
1
30
31
RTM DATA 0 (32 bits)
RTM DATA 1 (32 bits)
RTM DATA 2 (32 bits)
RTM DATA 3 (32 bits)
Figure 20: RTM Output Format
56
Rev 2
相关PDF资料
71M6543F-IGT/F IC ENERGY METERING
71M6545-IGT/F IC ENERGY METERING
720-10007-00300 CBL D-SUB 9PIN FMAL-25PIN FML 3M
720-10010-00025 CBL DSUB 9PIN FML-25PIN MAL .25M
720-10020-00300 CBL DSUB 9PIN FML-9PIN MALE 3M
720-10021-00300 CBL DSUB 9PIN FML-9PIN FEMAL 3M
72231-0881 8 POS T/P SHLD 4 GR ASSY
7250B PANEL KIT BOTTOM FOR R-1220 CASE
相关代理商/技术参数
71M6533H 制造商:TERIDIAN 制造商全称:TERIDIAN 功能描述:Energy Meter IC
71M6533H-IEL 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IEL/F 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IELR 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IELR/F 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IGT/F 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533H-IGT/F1 功能描述:计量片上系统 - SoC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533H-IGTR/F 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel